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Abstract
Large-area land-cover maps create unique challenges for thematic map accuracy assessment. We
describe desirable characteristics for the design of large-area assessments, and propose two-stage
cluster sampling as a general framework possessing the flexibility needed to achieve these
characteristics. The sampling theory supporting use of the two-stage design is briefly described.
We identify a need for further research to evaluate specific design options within this general
sampling framework, and we describe some practical and philosophical problems that must still
be resolved to enhance the effectiveness of accuracy assessments.

1. Introduction
The Multi-Resolution Land Characteristics (MRLC) mapping program uses 30-meter resolution
Landsat Thematic Mapper imagery as the baseline data for a land-cover map of the conterminous
United States (Vogelmann ef al., 1998). The classification scheme consists of 21 classes
reflecting an approximate Anderson (ef al., 1976) Level II detail. Mapping is conducted on a
regional basis using ten regions to partition the United States. Accuracy assessment of each
geographic region follows completion of the map for that region. The land-cover map assessed
has not been aggregated to a minimum mapping unit, although it is anticipated users of the map
will often: impose such an aggregation. The reference data used to assess accuracy are derived
from aerial photography, and the assessment unit is a 30-meter pixel. Zhu ef al. (in press) and
Yang ef al. (2000) describe additional details of the accuracy assessment protocol.

2. Design Criteria for MRLC Accuracy Assessment
Planning a sampling design for accuracy assessment requires consideration of the assessment
?bjectives and practical constraints. Desirable characteristics for the MRLC accuracy assessment
Include: 1) the sampling design should satisfy probability sampling protocol; 2) estimates of
~ccuracy parameters should have acceptable precision; 3) a simple design is preferable for proper
Implementation and data analysis; and 4) costs should be as low as possible.
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Probability sampling is defined as a protocol in which the inclusion probabilities for all elem
of the sample are known, and inclusion probabilities for all elements of the population are ::t~
zero (Stehman and Czaplewski, 1 ~~8). Inclusion pr?babilities are a. cha.racteristic. of a sampli~
design, and repre.sen~ the p'robablilty ,:>f a. populatlo.n. ~lement beIng Included m the sample.
Probability samplIng I.S crucIal to t~e scl~ntlfic defensIbIlIty of a:curacy assessment. Probability
sampling has a long hIStory of use m agrIculture, health, and bus mess surveys (Bellhouse, 1988)
and it is a key element of many natural resource sampling protocols in the United States such ~
the National Resources Inventory (Nusser and Goebel, 1997) and the Forest Inventory and
Analysis (USFS, 1992). Kish (1987, p. 23) notes that probability sampling is the only "feasible
method recognized by survey samplers in most practical situations" to ensure a representative
sample. Further, the randomization mechanism incorporated in any probability sampling design
prevents subjective biases from influencing the sample selected. Recent evidence indicates that
convenience sampling can give misleading results in environmental assessments (Peterson et a/.,
1999), so relying on such non-probability samples to provide valid inference in accuracy
assessment is a risky proposition. If accuracy assessment is to achieve scientific credibility,
probability sampling becomes a necessity.

Within the probability sampling framework, the MRlJC sampling design is constructed to provide
adequate precision for estimating land-cover class specific estimates for each geographic region,
while still maintaining costs within the available budget. Within each region, stratification by
mapped land-cover class is implemented to enhance precision of the class-specific estimates
(user's accuracies). Sample sizes planned for each land-cover stratum are chosen to
accommodate subregional estimates anticipated of interest to users (e.g., state-level estimates).
To reduce costs of obtaining reference data, the number of air photos required is limited by
implementing a cluster sampling design. The specific characteristics of the clusters defined may
vary depending on the geographic region. Simplicity is achieved in part by maintaining equal
inclusion probabilities for pixels within a land-cover class stratum within each geographic region.
Inclusion probabilities for different land-cover strata differ within a geographic region, and
inclusion probabilities for the same land-cover class differ among regions. Because each of the
ten geographic regions is treated as a stratum, it is not necessary for every region to be sampled
exactly the same. The primary requirements for uniformity among geographic regions are the
reference data collection protocol and the definition of agreement used to compare the map and
reference classifications.

3. Sampling Design
The general sampling structure implemented for the MRLC accuracy assessment incorporates
both cluster sampling and stratification. The first-stage sampling employs a large primary
sampling unit (PSU) to restrict the spatial distribution of the sample. The PSU defined for the
first geographic regions completed was based on characteristics of the aerial photography used
for the reference data. For convenience and to alleviate confusion about the exact nature of the
PSU defined from the aerial photography, we have subsequently adopted a 6 km by 6 km PS~.
Once the first-stage sample of PSUs has been selected, these PSUs are then subsampled to obtain

the sample pixels.

This general two-stage design structure has great flexibility making it highly advantageouS for
large-area accuracy assessments. Numerous options are available for sampling at the first and
second stages. For example, in one geographic region we selected an equal probability sample of
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pixels .within each p~U because ou.r objective was to impl~m~nt a .self-weightin~ design
permitting easy analysIs (Zhu et al., In press). For other applications, It may be desirable to
stratify by mapped land-cover class if the objectives specify precise estimates for each class, or to
stratify by geographic features such as accessibility or public versus private land to improve cost-
effectiveness of the design. In the MRLC design, stratification by mapped land-cover class is a
featllTe common to each geographic region. Once the first-stage sample of PSUs has been
selected, the pixels within those PSUs are stratified according to mapped land-cover class. A
simple random sample is then obtained from the pooled collection of pixels for each class. This
design is analogous to double (or two-phase) sampling for stratification (Cochran, 1977, Sec.
12.2), but the cluster sampling imposed at the first-stage complicates the design slightly from the
simpler textbook illustrations usually presented. Conditional on the first-stage sample of PSUs,
each pixel within a land-cover class stratum has an equal probability of selection.

The current MRLC design protocol does not control the distribution of second-stage sample
pixels among the first-stage PSUs. For a given land-cover class, the distribution of the second-
stage sample pixels to PSUs will be proportional to that class's representation in the PSUs. That
is, more of the second-stage sample pixels will be found in those PSUs for which the class is
prevalent. Table 1 illustrates the distribution of pixels to PSUs for the upper Midwest MRLC
geographic region when the target sample size is 100 per land-cover class, and the first-stage
sampling intensity is 2% of the area. For the more common classes (e.g., II=water,
41=deciduous forest, 81=pasture/hay, 82=row crops, and 91=forested wetlands), the sampled
pixels are generally spread among a large number ofPSUs. For example, deciduous forest (class
41) accounts for 19.17% of the population. The sample of 100 deciduous forest sample pixels is
distributed such that 77 PSUs have a single sample pixel, 10 PSUs have two sample pixels, and I
PSU has three sample pixels. Sample pixels of rarer classes (e.g., 21=low density residential,
22=high density residential, 23=commercial or transportation, 83=small grains) may cluster in
only a few PSUs. For example, for class 32 (quarries/strip mines, 0.11% of the population),9
PSUs have a single sample pixel of class 32, I PSU has two sample pixels, and 4 PSUs have
three sample pixels. The remaining 77 sample pixels of class 32 are found in only 3 other PSUs.

Allocation of the second-stage sample to PSUs is a precision, not a bias issue. In general, a
positive within-PSU (i.e., intracluster) correlation for classification error is anticipated reflecting
the common phenomenon that classification error tends to be positively spatially autocorrelated.
Reducing the effect of positive spatial autocorrelation improves precision, and this is achieved by
spreading the sample pixels among more PSUs. To enhance precision for estimated accuracy of
rare classes, it may be better to disperse the second-stage sample among more PSUs.

Two alternative sampling protocols to distribute the second-stage sample among more PSUs are
described. Both protocols retain stratification by land-cover class. The first alternative is to
sample a fixed number of pixels from each PSU. Maximum dispersion among PSUs is achieved
by selecting one pixel per PSU. For the first-stage sample shown in Table I, it would be possible
to obtain a sample of 100 pixels from 100 different PSUs in all but three of the land-cover classes
(class 31, commercial/transportation; class 32, quarries/strip mines; and class 51, shrubland).
Class 32 just misses having 100 PSUs available from the first-stage. A minimum of two pixels
per PSU must be sampled to estimate the within PSU component of variation for standard error
calculations. This design requires more complex analyses because, within a land-cover stratum,
pixels now have unequal inclusion probabilities. As long as the inclusion probabilities are
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known, the design still satisfies the probability sampling criterion, but the analysis must aCCOunt
for these unequal inclusion probabilities via proper weighting of the data within strata. Standa.rd
stratified random sampling formulas.for e5~imating p~ame~ers of the error matr:x no longcr apply
io th:s version of \WO-~U1gc sampling. fhe question anses of whether the potential gain in

precision resulting from this design is sufficient to overcome the increased complexity of the

analysis.
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Table 1, Distribution of sample pixels among PSUs for the upper Midwest region of the MRLC

The second alternative retains equal inclusion probabilities for pixels within a land-cover stratum.
In this option, both the first and second stages of sampling are unequal probability sampling
designs, but the combination of the two stages is implemented to achieve equal inclusion
probabilities for the overall selection process (Kish. 1992). At the first stage, the PSU inclusion
probabilities are proportional to the number of pixels of land-cover class k in the PSU. For
example, if PSU i has 200 pixels of class k and PSU j has 20 pixels of class k, the probability of
sampling PSU i is set at 10 times the probability of selecting PSU j. At the second stage, an
equal number of pixels are sampled from each first-stage PSU regardless of the number of pixels
in the PSU. For example, suppose two pixels are sampled from each ofPSUs i andj. The pixels
in PSU i have conditional probability of 2/200 or 0.01 of being sampled at the second stage, and
the pixels in PSU j each have conditional probability 2/20 or 0.1 of being selected (the
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conditioning is on the PSUs sampled at the first stage). The overall inclusion probability for each
pixel is then the product of the conditional second-stage inclusion probability with the first-stage
inclusion probability for the PS~-' ConseQu~ntIY. th~ inc\us:on prob..biJitic'J in tn~ ~~~mple
""",Id be eCJu..l. ~~ hiCll prQ~~OllllY of sarnplmR PSU I {relat~ve to psu j) is compensated for at

the second stage in which the pixels in psu j have 10 times the probability of being sampled
relative to the pixels in PSU i. A major advantage of this protocol is that the equal probability
feature of sampling in each land-cover class allows for simpler analyses. Accuracy estimates can
be obtained from standard stratified random sampling formulas.

precision is one criterion on which to compare these different two.stage sampling options.
Evaluating the relative precision and cost of the design alternatives is difficult because it requires
detailed information on the spatial autocorrelation of classification error. That is, relative
precision depends on the within-PSU correlation of classification error, and good estimates of
this intracluster correlation are generally unavailable. Comparisons based on hypothetical values
can provide some insight on the relative precision of the alternatives.

4. Sampling Theory
The sampling theory required to support the two-stage sampling designs described in the
previous section is reported .by Sarndat et at. (1992. Sections 9.1-9.4). This theory is more
complex than that required for simple designs and analyses such as those based on simple
random or stratified random sampling. However, the theory is generally applicable and requires
only that the inclusion probabilities of the design are known. These inclusion probabilities
should be available for any specific choice of first- and second-stage options within the general
two-stage structure defined.

The nvo-stage design currently used for the MRLC assessment creates no novel concerns for
estimating the parameters summarizing an error matrix. These estimates follow from standard
stratified sampling formulas. The two-stage cluster design does affect standard error calculations
because stratified random sampling formulas do not take clustering into account. Standard error
approximations ignoring clusters typically underestimate variability (Stehman. 1997). Estimating
standard errors for cluster sampling requires additional record keeping to identify from which
PSU each sample pixel has arisen, and the estimation formulas themselves are more complex.
For some accuracy assessment objectives, an approximate standard error may be adequate. Many
consumers of the land-cover map will be far more interested in the accuracy estimates themselves
than in the standard errors of these estimates. For scientific purposes, a good (i.e., nearly
unbiased) estimate of the standard error" is important, but for practical use of the accuracy
infonnation, an approximate standard error will often suffice.

Another important element of the sampling theory needed for accuracy assessment is
subpopulation estimation. A subpopulation (also sometimes called a 'domain') is defined as any
~ubset of the map population for which accuracy estimates are desired. Subpopulations may
Include geographic regions defined by administrative units (e.g., states or provinces), ecoregions,
regions of homogeneous land cover, or subgroups defined by perceived quality of the reference
data, such as defined by a confidence rating (Zhu et al., in press). Subpopulation estimates can
be computed as long as some elements of the subpopulation appear in the sample.

Subpopulations not identified as strata may lack adequate sample size for precise estimation if the
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subpopulation is small.
subpopulation estimation.

Sarndal et al. (1992, Sec. 10.3) provide the necessary theory for

When the land-cover map has many users and intended applications, accuracy assessment dat
will be subjected to a variety of user-specified, secondary data analyses. Common examples o~
secondary analyses are subregional estimates and estimating accuracy for combinations of land.
cover classes (e.g., combining low-density residential, high-density residential and high-density
commercial into a single class). Simplicity for secondary data analysis is a desirable design
feature, and a self-weighting sampling design creates this feature. Equal probability sampling
designs are self-weighting (i.e., the sample data need not be weighted in the analysis). Simple
random and systematic sampling, both being equal probability designs (Stehman, 1999), are
examples of self-weighting designs, but these basic designs are rarely cost-effective for a large.
area accuracy assessment. More complex self-weighting designs, typically employing cluster
sampling, will be necessary. In fact, a fully self-weighting design is often impractical for
accuracy assessment. The regional stratification in the MRLC design creates unequal
probabilities for sample data arising in different regions, and the common practice of stratifying
by land-cover class requires a weighted analysis whenever estimating a parameter combining
several land-cover classes. Because a self-weighting design is typically not the best choice for
accuracy assessment, the question arises of how to provide publicly accessible reference data. If
users conduct secondary analyses without the proper weighting, the estimates will be statistically
inconsistent and potentially badly biased. Simply providing a map or database of reference
sample locations is inadequate to ensure proper use of the reference data. If reference data are to
be made publicly available, a strategy for enhancing proper use of the data must be established.

5. Discussion
Although recent efforts at probability sampling-based accuracy assessments have been successful
(Edwards et al.. 1998; Scepan, 1999; Zhu et al., in press), large-area accuracy assessment based
on sound statistical sampling and analysis principles is still in its infancy. Each new experience
teaches more about the process, and communicating lessons learned from each effort is
important. Sampling design for accuracy assessment of major land-cover mapping projects is
challenging because all accuracy objectives cannot be anticipated, and the assessment will be
asked to answer far more questions than the resources available could possibly achieve. An
additional caution in accuracy assessment planning is that once a sampling design is selected,
overcoming the inertia established by the choice can be difficult. Once a design is in place, it
will be difficult to revise the design except in minor ways. Typically the time and resources for
planning the assessment are severely constrained as the urgency to get a design in place and
collect reference data becomes the dominant force. The immediate need to complete the
assessment often prevents careful evaluation of different sampling design options, and few
resources and little time are allocated for researching better design alternatives. In the MRLC
assessment, design choices made very early in the project have by necessity been carried through
to subsequent geographic regions. Fortunately, we are in the enviable, but perhaps unusual
position of being able to improve the design as we move to new geographic regions.

The MRLC provides a good illustration of how a sampling design created for one set of

objectives may have extended influence to subsequent projects. A proposal exists to cons~ct
another land-cover map for the conterminous United States based on year 2000 imagery. Initial
planning for accuracy assessment of the 2000 map will likely be influenced to some extent by the

4,h International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences

606 -



Proceedines Accuracy 2000. Amsterdam. July 2000

design implemented for the ~ 990 MRLC. F~rt~er, the 1990 .and 2000 maps. creat: the
opportunity for a change-detectIon product, and sIgnIficant cost-savIngs could be achieved If the
19~)O reference data can be used as part of the change-detection accuracy assessment. The
'mmediacy of planning the initial regional assessments for the 1990 MRLC precluded
~oP:;iderin8 the potential impQct of thc dcsign choices on future applications such as change-
detection accuracy assessment. It would not necessarily be the case that the 1990 design
strUctures prove advantageous to other uses. However, the general sampling framework
implemented for the current MRLC assessment has the necessary flexibility that much of the
design structure will be effective for accuracy assessment of the MRLC 2000 land-cover map and
change-detection products.

Large-area accuracy assessments still have much room for improvement. We have identified
comparing precision for various options within the general two-stage sampling framework as a
pressing research need. At a more general level, a clearer framework for interpreting accuracy
assessment results in light of applications of the land-cover map is needed. Descriptive accuracy
information is important to a broad class of users, but it is not clear that standard accuracy
assessment reporting effectively serves the needs of users interested in different spatial scales
and/or aggregation of the data. There is also a need to consider the different objectives of
designing and reporting accuracy assessment for user consumption versus scientific scrutiny.
Map users may be satisfied with a few easy to interpret, approximate accuracy statistics. To
satisfy the more demanding task of withstanding scientific scrutiny, statistically rigorous, high
quality estimates may be required. Resolving these practical and conceptual issues of large-area
accuracy assessments will continue to be a challenging and productive activity.
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